
MODELLING DYNAMIC TRAFFIC FLOW IN NETWORKS 

Hll..LIGES Martin 

Institut für Theoretische Physik 
Universitiit Stuttgart 
D-7000 Stuttgart 80 

Abstract 
In this paper a simulation model for time dependent traffic flow in networks with multiple 

sources and sinks is presented. The main goals are the real-time simulation of large highway 
networks and the development of a planning tool for traffic networks. First, the assurnptions 
beyond the model are presented. Second, I describe the adaption of the mode! to numerical simu
lations and the constructions of networks. The next sections contain a short note on decision 
processes and our approach to this field. Then an extension of the model to a larger frarnework, 
and possible fields of application are proposed. In the Iast section a simulation of the traffic flow 
in a network is shown. 
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1. Introduction 

In recent years the nurnber of traffic jams and breakdowns on the highways have increased significantly. This is due 
to the fact of a steady increase of the daily traffic volume, while the capacity of the traffic network was kept nearly 
constant. In Gerrnany the extension of the highway network bas come to an end for severa!, financial and ecological, 
reasons. Therefore the need of the optimization of the traffic flow on the existing network, together with other 
measurements, is obvious. In this paper a phenomenological simulation mode! of the traffic flow in networks is presented. 
The need for such models is evident: It is impossible to control (and within this to optimize) the traffic flow in a 
network without any knowledge about the future evolution of the dynamic load in the observed network. Therefore we 
need models that allow for the prediction of the state of the network faster than in real time. 

2. ldea of the model 

The traffic flow on highway networks consists of many cars in each of them sitting a driver with an individual 
behavior. This simple statement immediately leads to one of the main problems in modelling the traffic flow on a road : 
If we want to tak.e into account the individual (microscopie) behavior of each driver, we must process an enormous 
mass of information to obtain the systems behavior. There are models dealing with this approach (e.g. [13] {Wiedemann) ), 
but even with the fastest computers it is not possible to simulate the traffic flow in a larger network in real-time. 

Therefore the main idea is to neglect the individual (microscopie) behaviorof the drivers and to develop a model for 
a macroscopic description of the evolution of the traffic flow, dealing with statistical quantities, that can be derived by 
aggregating the quantities on the microscopie level. 
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At once the question arises :Aie there related fields of research with comparable problems ? 

The answer is :Y es, hydrodynamics succeed in describing the macroscopic flow of fluids too, without any knowledge 
about the actual individual behavior of the particles. Therefore hydrodynamics may give us a frameworlc, that simpli
fies the construction of a model significantly. Nevertheless for the adaption of the theory of hydrodynamics we have to 
modify the equations in a reasonable way. Therefore we have to think about the differences between the flow of a fluid 
and the traffic flow on a road. 

3. Assomptions beyond the model 

The frrst hydrodynamical models for the description of traffic flow weredeveloped in the fifties by Lighthill and 
Whitham [3] and Richards [10]. Since then various people worked on that field and improved the models in several 
ways (e.g. [1], [4], [5], [7], [12]). Our concern in this section is to give a short review about the properties with regard 
to the adaption for numerical simulations. A more comprehensive discussion of the mode! is given in [2]. 

First we have to list the similarities between a fluid and the traffic flow : 
-The density r(x,t) of a fluid corresponds to the number of cars on an given length of a road. 

-The velocity of the particles in the fluid corresponds to the velocity of the cars. 

- In both systems holds a conservation law. This means, that in a system without any sources and sinks the number 
of partie les, as well as the number of cars must remain constant. Mathematically this is expressed with the so-called 
continuity equation : 

mr(x,t) dj(x,t) 

dt 
+ ----

dx 
=0 (1) 

where r(x,t) is the density of the fluid (cars) at place x at time t, while j(x,t) is corresponding flow. 

Now we have to consider the differences between these two systems : 

-The hydrodynamical flow j(x,t) is defined as j(x,t) = r(x,t) ·v(x,t). This is different to the behavior of the drivers. 
They take into account the velocity of the cars v(x+s,t) a certain distance s ahead. Therefore, in this mode!, the 
phenomenological ansatz for the flow reads asj(x,t)= r(x,t) ·v(x+s,t). 

- In contrast to the behavior of a fluid, theoretical 
considerations (e.g. Prigogine [8]) as weil as empirical in-
vestigations show a functioual relationship between the vmax 
density of cars and their average stationary velocity 
v(x,t)=v(r(x,t)). The most simple relationship is given in 
the following picture : 

- In traffic flow after a sudden change of the density, 
due to the reaction lime of the drivers and cars, the actual 
velocity will not reach the «Stationary velocity» 
instantaneously. This behavior is described by a relaxa
tion ansatz : 

éJv(x,t) 

dt 
1 =--1: 

{v(p(x,t))- v(x,t)] 

4. Adaption for numerical simulations 

(2) 
1t 

The task in this section is to construct a simulation mode!, that includes the properties of the traffic flow given 
above, and that can be performed on a computer easily. 
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- First, for computational reasons, the roads on the network have to be split up into cells i = l, ... J, and we have to 
give a differentiai equation for the evolution of the density in each cell. This is a discrete form of the continuity 
equation: 

dN(i.t) A y. t5p(i.t) .<. 1 . ) ·c· . 1 ) (3) - ='""""i- =jl· -l.t -jl ~l+ ,t 
dt ar 

- Second we have to include the foresight of the drivers. In accordance to the flow given in the preceding section we 
write: 

j(i->i+1,t) == r(i,t) · v(i+l,t) (4) 

- Last we need an additional differentiai equation for the velocity for every cell of the raad : 

i1v(i,t) 1 
=- {v(p(i,t))- v(i,t)} (5) 

éJt 't 

5. Construction of networks 

The discrete model, given in the section above, allows for the construction of complex networks. An arbitrary node 
(intersection) can be constructed as a combination of two basic items : 

a - 1 b+1 

Conve.tging of two links into one Diverging of one link into two 

- Two links (roads) converge to one link, and 

-One link (road) diverges to two links. 

Within the frame work of the model the converging of two links into one (picture to the left) is given as : 

()p(a,t) 
D.xa ---aï = p(a-l,t)v(a,t) -p(a,t)l-\c,t) 

()p(b,t) 
D.xb ---a( == p(b-1, t)v(b,t)- p(b,t)v(c,t) (6) 

()p(c,t) 
D.xi --at' = {p(a,t) + p(b,t) }v(c,t) - p(b,t)v(c+ l,t) 

The flow out the cells a and b equals the flow into cell c. So flow conservation is still guaranteed. 

The dive~ng of a link into two links (picture to the right) is modelled in a similar way, but, in addition, the wishes 
of the drivers have to be taken into consideration. 

This is done by multiplying the flow out of cella with time dependent functions p( a,b,t),p( a,c,t), which describe the 
probability of a driver coming from a, to select a certain route b resp. c. Naturally the probabüities depend on the 
destination of the drivers, too. Therefore one has to distinguish drivers to different destinations. 

Théo Quant - 1993 • 93 



Neglecting the complication of different destinations this is expressed as : 

()p(a,t) 
ÂXa ---al = p(a-l,t)v(a,t)- p(a,t)(v(b,t)p(a,b,t) +v(c,t)p(a,c,t)] 

()p(b,t) 
ÂXf, ---al = p(a,t)v(b,t)p(a,b,t)- p(b,t)v(b+l,t) (7) 

ÂXj ()p(c,t) = p(a,t)v(c,t)p(a,c,t)- p(c,t)v(c+l,t) 
dt 

The probabilities p can be described by various route choice models. 

6. Note on decision processes 

As mentioned in the section above the probability of a driver to chose a certain route depends on many factors. 
Sorne of these are for example : 

-destination of the driver (e.g. length of a certain route, travelling time for a certain route), 

- informations, of the driver ( e.g. about traffic jams on a route) and 

-persona! preferences of the driver. 

This means, that every driver has a dîscrete set of alternatives (discrete set of routes), where he has to chose. Each 
alternative is chosen with a different probability. These probabilities can be described with so-called «Discrete Choice 
Models>>. Sorne classical models are: the multinomiallogit mode!, the multinomial probit mode! and the nested logit 
mode!. Besides of these models in our institute the so called rn aster equation approach was developed. 

Ali these models introduce a so-called «utility function>>, that measures the utility for a driver to choose a certain 
alternative. The uùlity for an alternative depends on the characteristics of this alternative, and, in the master equation 
approach, on the actual state of the system. Besides of the master equation approach a survey of these models is given 
in [6). An introduction to the master equation approach is given e.g. in [11). 

7. The master equation approacb 

The master equation describes the evolution of a probability distribution P(n,t) starting from an initial distribution 
P(n,O), if the transition rates of the system w,(n,n') are given. The master equation reads as: 

where 

n is the state of the system. 

P(n,t) is the probability to find the system in state nat time t. 

w,(n,n') is the transition probability per time unit from state n to state n', given, that n is realized at time t. This 
depends on the system's state itself as well as on external influences and time. 

A possible form of the transition rates w,(n,n') reads : 
w,(n,n') =v ••.• ·exp[u •. (t)- u.(t)] 

where 

"D' ,n is a flexibility parameter. 

"n •r•J is a dynamical uùlity function. 

The dynamical utility function $u$ depends on extemal parameters and the systems state itself. The extemal parameters 
include the (time dependent) route characteristics (e.g. route length, travelling time, occurrence oftraffic jams). 

In contrast to other discrete choice models the master equation approach allows for the computation of the evolution 
to the stationary state of the system. Other models just consider the stationary state of the system without any possibilities 
to calculate the evolution. 
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8. Extension to a larger framework 

Within the the master equation approach the 
given model can be seen as a short terrn module of 
a larger framework for an integrated description of 
transportation and settlement activities in a region. 
We suggest as other modules in that fuunework the 
modal split and the short distance migration. A more 
comprehensive description is given in [9]. The 
diagram given below gives an illustration about our 
ideas. 

(1) e.g. origin-destination relations, traffic volume 
(2) e.g. travel time, costs 
(3) e.g. traffic volume 
(4) e.g. trip time, trip costs 
(5) e.g. partial volumes of transport 

9. Possible results and fields of application 

TFN 

----
1 Housing market 1 

(!) 

inNetworks 

r- J--
Change of networks 

L-----' 

(4) 

(5) 

SOM 

(3) 

Modal Split MS 

There are several results, that can be obtained from the presented mode!. First of ali it allows for a forecast of the 
evolution of the traffic in a network. This gives a possibility to develop controlling strategies to optimize the flow. 
Moreover, the mode! gives the possibility to calculate the travelling times and delay times in a networlc.ln combination 
with these results the consumption of fuel and the pollution of the air, caused by the traffic can be calculated. 

Besides of the inclusion of the mode! in the integrated fuunework, there are two main fields of application of the 
mode!. On one band the mode! gives the possibility for a dynarnic control of the traffic flow in a network, because it 
allows for the real time calculation of the efficiency of e.g. time dependent limits for the velocity or route recommendations 
to avoid congestion and traffic jarns. On the other band the mode! gives a tool for testing the efficiency of changes of the 
topology in an existing network ( e.g. construction of new roads). Moreover, it is an useful tool for a comparison of the 
properties of different network topologies. 

10. Simulation 

The next six picttues show a simulation of a small traffic network. The given network has two sources Q1 and Q2 on 
the left side. Two sinks (S 1.S2) are placed on the right side of the network. From each source a part of the drivers is 
destinated to sink S 1, the other part to sink S2• Therefore, the drivers have to decide for their route at the nodes N 1 or N2• 

In this simulation the multinomiallogit mode! is used to determine the probability of choosing a certain route only 
depending on the length of the route. The network consists of 320 cells with a length of 200 rn, yielding a totallength 
of64km. 

The arrows in in the following figures indicate the direction of the traffic flow. There is on! y one-way traffic on 
every link, except the two links between the nodes N 1 and N2 (indicated by the two short arrows). Two-way traffic is 
modelled with two different links in opposite directions. There is no interdependence between the two links, but can be 
modelled as weil. 

In the following pictures the density in the network is indicated by the grey leve!. The darker the grey leve!, the 
higher the density. An offset is used to denote the empty network. 

The simulation starts with an empty network at t=O.O. The parameters of the cells are : r,.,.. = 60 cars/km, v"""'= 120 
km/h, t =Osee (this is an slightly simplified mode!, that gives the effective flow in the network) and Dx = 0.2 km. The 
linear v(r)-relationship was used. 
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The network is empty, besides of the fust cars entering 
the network from Qr There is still no flow into the network 
coming from Q r 

t= 36.0 min 

In this picture, there is a long traffic jam in front of S2., 

even continuing in the preceding links. There is a slightly 
higher density in front of Sr Cars are entering the network 
from both sources QI and Q2. 

t= 58.2 min 

Now cars are entering the network from source QI, too. 
As cao be seen, the fust cars reached sink S2 .. This corres
ponds to the maximum speed of 120 km/b., that gives a 
minimum travelling time of 9 min for the shortest route 
(A delay until the traffic jam occurs must be added). This 
traffic jam occurs due to the low velocity at S

2
• 
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Now the inflow from Q2 into the network bas stopped, 
too. Despite of the opening of S2 the the totallength of the 
traffic jam in front of S2 is sill increasing. Moreover, looking 
at the densities belonging to a certain sink (not shown here), 
even cars destinated to SI have to wait in the traffic jam 
un til they cao pass the node in the middle of the network. 
This is the reason why the link from the node in the middle 
to sl is practically empty. 

The traffic jam in front of s2. has grown even more, but 
the velocity in sink s2. has been increased. The density 
just in front of S

2
• has lowered down. Now there is a 

significantly higher density in front of Sr As can be seen, 
no more cars entering the network at Q r 

Now the traffic jams are disappearing. The last cars are 
leaving the network. 
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